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1. INTRODUCTION 

LDEC was originally developed by Morris et al. [1] 

as a distinct element (DEM) code to simulate the 

response of jointed geologic media to dynamic 

loading. Cundall and Hart [2] review a number of 

numerical techniques that have been developed to 

simulate the behavior of discontinuous systems 

using DEMs. The DEM is naturally suited to 

simulating such systems because it can explicitly 

accommodate the blocky nature of natural rock 

masses. For example, Figure 1 shows a jointed 

medium, typical of the early applications of LDEC. 

LDEC was later extended to include Finite 

Element-Discrete Element transition [3], including 

an extension to include a nodal cohesive element 

formulation, which allows the study of fracture 

problems in the continuum-discontinuum setting 

with reduced mesh dependence [4]. Additionally, 

LDEC supports fully-coupled fluid flow using both 

Smooth Particle Hydrodynamics (SPH) and 

unstructured fracture flow mesh methods. 

This paper will consider the application of LDEC to 

activation of fracture networks during CCS. 

                    

Fig. 1.  An example of an LDEC geomechanical 

computational domain: A cavity in coal. The model includes 

non-persistent and randomized joint sets. LDEC was designed 

to calculate the evolving mechanical properties of such 

structures as they fail under different loading conditions. 

2. STUDY OF PERMEABILITY CHANGE DUE 

TO JOINT ACTIVATION DURING INJECTION 

Before considering direct simulation of an entire 

fracture network using LDEC, it is useful to 

consider an analysis of individual fractures. This 

analysis considers fractures of all orientations in 

isolation and highlights those orientations that will 

be activated by elevated pore pressure. 

We consider the following in situ stress state: 

σeast = σoverburden = 40MPa                                     (1) 

σnorth = 0.6 σoverburden =  24MPa                             (2) 

and a hydrostatic pore pressure of 15MPa. Figure 2 

shows the coefficient of friction required for 
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stability of fractures of all orientations experiencing 

these stress conditions. 

 

Fig. 2.  Plots of friction coefficient for fractures of all 

orientations with a pore pressure perturbation of 0 MPa, 10 

MPa, 15 MPa and 20 MPa.. Blue corresponds to a coefficient 

of friction of 0.0 and 0.6 respectively. Orientations requiring 

larger frictions coefficients are presumed to fail in shear and 

are shown in black. 

The results indicate that shear failure of the 

fractures is observed at approximately 16 MPa of 

increase pore pressure. 

3. APPLICATION OF LDEC TO INJECTION 

INTO AN EXTENSIVELY FRACTURED 

RESERVOIR 

In this section we present results of a direct 

simulation of an entire fracture network using the 

LDEC code. In contract with the previous section, 

the LDEC analysis includes interaction between the 

fractures as they fail and stress is redistributed 

throughout the network. We consider injection into 

an extensively fractured region bounded above and 

below by intact rock. In this section we consider the 

extensively fractured domain shown in Figure 2 

which cannot be practically meshed into a 

conforming finite element mesh. Consequently, for 

this application we employed the deformable 

polyhedral block implementation in LDEC which 

permits the explicit inclusion of each fracture 

surface. Although LDEC has been demonstrated on 

geomechanical problems including tens of millions 

of fractures [5], this small demonstration problem 

only considered 13 thousand fractures.  

The in-situ stress state was assumed to be 

anisotropic with: 

σeast = σoverburden                                                    (1) 

σnorth = 0.6 σoverburden                                             (2) 

 

LDEC was used to simulate the response of the 

fractured region to a point injection source centered 

within the fractured region (Figure 3). 

As the pore-pressure is increased, stress is 

redistributed throughout the rock mass, inducing 

shear failure on many fractures. Figure 4 shows the 

distribution of responses within the fractured 

portion of the domain. The simulation predicts that 

fractures of all orientations will be activated. 

However, as one would expect, a larger proportion 

of fractures initially experiencing shear stress are 

activated. Such simulations can be used to predict 

the evolving anisotropic permeability field due to 

complex interactions between the in-situ stress, 

fracture distribution and pore pressure fields within 

a heavily fractured rock-mass. 

 

 

Fig. 3.  This geometry of this small demonstration problem 

has 13 thousand, variably oriented fractures within the 

fractured region (left). The imposed pore pressure distribution 

(right) corresponds to a point injection source. 
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Joint orientations activated during injection
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Fig. 4.  The proportion of joints of each orientation relative to 

North that have failed. Joints of all orientations fail, but 

predominantly those initially experiencing shear stress. 
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